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Abstract

In this paper, we give a simple proof of the existence of invariants for reversible
perturbations of action-angle systems. The originality of this proof is that
it does not rely on canonical transformations that bring the system gradually
closer to a normal form, but rather on a formal development of the invariant
itself.
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Mathematics Subject Classification: 65L05, 65P10, 37M15

1. Introduction

An adiabatic invariant is a property of a physical system which stays constant when changes
are made slowly. In mechanics, an adiabatic change is a small perturbation of the Hamiltonian
where the change of the energy is much slower than the orbital frequency (see, for instance,
[Arn89, LM88]). The area enclosed by the different motions in phase space are then the
adiabatic invariants. In the case of a perturbed Hamiltonian of the form

H(a, θ) = H0(a) + εH1(a, θ), (1.1)

with (a, θ) ∈ R × T, the classical procedure for deriving the invariants of motion is to look
for a change of variables, close to the identity, in powers of ε,

I = a + εJ1(a, θ) + ε2J2(a, θ) + · · ·
ϕ = θ + εK1(a, θ) + ε2K2(a,θ) + · · · (1.2)

in order to eliminate the angle variables of the Hamiltonian. This method, that goes back to
Poincaré, was refined in the 20th century by Birkhoff [Bir27], Kolmogorov/Arnold/Moser
(KAM) [Arn63, Kol54], Nekhoroshev [Nek77], and now forms the classical perturbation
theory.
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Using this coordinate transform method, the classical conclusion is that the series (1.2),
though divergent, are asymptotic in the sense that, for instance,

|I (t) − a(t) − εJ1(a(t), θ(t)) − · · · − εk−1Jk−1(a(t), θ(t))| � Cεk

for exponentially large time t. Hence, I (t) is an adiabatic invariant for system (1.1), in the
sense that its variation is small for a long-time interval.

In this paper, we consider perturbed reversible systems for which the classical method
can be applied (see, for instance, [Mos73, Sev86, HLW06]). The systems we consider are of
the following form:

ȧ = εs(a, θ) ∈ R
m,

θ̇ = ω + ετ(a, θ) ∈ T
n,

(1.3)

where ε is a small parameter, s is an odd function of θ and τ is an even function of θ ,

s(a,−θ) = −s(a, θ),

τ (a,−θ) = τ(a, θ).
(1.4)

For such systems, we propose an alternative construction of the invariants. It stems from the
expansion of I itself and involves no change of variables in (a, θ): the procedure thus remains
extremely basic. We assume here that ω is a constant vector, independent of a. This simplifies
further some of the proofs while still covering most cases of interest1. We furthermore suppose
that our model is nondegenerate, a not-so-serious limitation as most systems are nondegenerate
(see [Arn89]).

Although the form of equations (1.4) seems very specific, a lot of systems in classical
mechanics (reversible integrable ones to be precise) can be transformed into action-angle
variables (see, for instance, [HLW06, chapter XI]). A prominent example of such a mechanical
system is the Fermi–Pasta–Ulam model [FPU55] which nicely illustrates the persistence of
adiabatic quantities (in this model, an adiabatic invariant is built up from the oscillatory
energies of the stiff springs).

Results derived in this paper apply to the Fermi–Pasta–Ulam equations as much as to
many other systems in celestial mechanics for instance. Moreover, they might be helpful to
analyse geometric properties of numerical methods or to obtain stability results of a more
theoretical nature such as those proved in [Moa02] or [HLW06, chapter XI].

2. The basic iterative scheme

Instead of studying coordinate transforms that bring (1.3) closer to some normal form, we
search directly for an invariant of (1.3) of the form

Iβ(a, θ) = β · a +
∑
k�1

εkJk(a, θ), (2.1)

where β ∈ R
m and the functions Jk’s are defined on R

m × T
n. Here and in the following, the

dot in β · a stands for the canonical scalar product of vectors β and a. In order to obtain a
formula for the Jk’s, we compute the (formal at this stage) derivative along the exact solution
of (1.3),

1 The case of varying frequencies is more technically intricate and would require ultraviolet cut-off techniques. It is
out of the scope of this paper.
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d

dt
Iβ(a, θ) = β · ȧ +

∑
k�1

εk((∂aJk)ȧ + (∂θJk)θ̇),

= εβ · s +
∑
k�1

(εk+1s · (∂aJk) + εkω · (∂θJk) + εk+1τ · (∂θJk)),

=
∑
k�1

εk(Gk + ω · (∂θJk)), (2.2)

where

G1(a, θ) = β · s(a, θ)

and

Gk(a, θ) = s(a, θ) · (∂aJk−1)(a, θ) + τ(a, θ) · (∂θJk−1)(a, θ) (2.3)

for k � 2. Hence, the function Iβ(a, θ) is an invariant of (1.3) if the functions Jk satisfy

∀ k � 1, ω · (∂θJk)(a, θ) + Gk(a, θ) = 0. (2.4)

For k = 1, this equation yields

∀(a, θ) ∈ R
m × T

n, β · s(a, θ) + ω · (∂θJ1)(a, θ) = 0. (2.5)

Since J1 is required to be 2π -periodic, the average over the torus T
n of β · s(a, θ) must vanish,

i.e., ∫
Tn

β · s(a, θ) dθ = 0. (2.6)

Equation (2.5) then becomes solvable, as stated by lemma X.4.1 of [HLW06]. It is important
at this stage to underline the fundamental role of the reversibility assumption (1.4). As a
matter of fact, this condition ensures that the integral (2.6) is null, as can be seen from the
elementary calculus∫

Tn

β · s(a, θ) dθ =
∫

T
n
+

β · s(a, θ) dθ +
∫

T
n−
β · s(a, θ) dθ

=
∫

T
n
+

β · s(a, θ) dθ −
∫

T
n
+

β · s(a, θ) dθ = 0,

where we have assumed, for instance, that T
n = [−π;π ]n so that T

n = T
n
+ ∪ T

n
− with

T+ = [0, π ] × T
n−1 and T+ = [−π; 0] × T

n−1. At each step, one needs the solution of
equation (2.4) to be even with respect to θ : assume that Jk−1 is known and even. Taking into
account that

• s is odd w.r.t. θ ,
• τ is even w.r.t. θ ,
• ∂aJk−1 is even and ∂θJk−1 is odd ,

we see that Gk in (2.3) is odd and hence of zero average, so that Jk exists and is even.

3. Main result

Our construction requires a slight refinement of lemma X.4.1 of [HLW06], which we now
formulate together with some estimates using the following norms: let

Uρ = {θ ∈ T
n + iRn; ‖�(θ)‖ � ρ},
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where ‖·‖ denotes the maximum norm in R
n. If F is a real-analytic function from Br(a0)×Uρ

onto C, where for r > 0, Br(a0) is the complex ball of radius r and centre a0 ∈ R
m, we denote

‖F‖
r,ρ

= sup
(a,θ)∈Br (a0)×Uρ

|F(a, θ)|,

and whenever F is vector valued, say F ∈ C
m,

‖F‖
r,ρ

=
m∑

i=1

‖Fi‖r,ρ
.

Lemma 3.1. Suppose ω ∈ R
n satisfies the diophantine condition

∃γ > 0, ∃ν > 0, ∀α ∈ Z
n/{0}, |α · ω| � γ |α|−ν . (3.1)

Let a0 ∈ R
m, and consider positive numbers r and ρ and let G be an analytic function on

Br(a0) × Uρ . Let 〈G〉 denote the average of G over T
n. Then, for all positive δ < min(1, ρ)

and ρ < r , the equation

ω · ∂θJ + G = 〈G〉 (3.2)

has a unique analytic solution J on Br(a0) × Uρ−δ with zero average 〈J 〉 = 0 on T
n, and we

have the estimates

‖J‖
r,ρ−δ

� κ0δ
−η+1‖G‖

r,ρ
and ‖∂θF‖

r,ρ−δ
� κ1δ

−η‖G‖
r,ρ

, (3.3)

where η = ν + n + 1, κ0 = γ −18n2ν+1ν! and κ1 = γ −18n2ν+2(ν + 1)!. Moreover, if G is an odd
function of θ, J is an even one.

Proof. We take over the proof of lemma 3.1 in order to show that J is even as soon as G is
odd: denoting

G(a, θ) =
∑
α∈Zn

gα(a) eiα·θ and J (a, θ) =
∑
α∈Zn

jα(a) eiα·θ

the Fourier expansions of G and J , we have for a nonzero α ∈ Z
n, jα(a) = − gα(a)

iα·ω . The
function G being odd, gα(a) = −g−α(a) for all α ∈ Z

n and all a ∈ Br(a0), so that

j−α(a) = − g−α(a)

i(−α) · ω
= − gα(a)

iα · ω
= jα(a),

i.e. J is even. It has zero average since g0 = 0. The estimates (3.3) are then obtained just as
in lemma X.4.1 of [HLW06]. �

We are now in position to state the main result of this paper.

Theorem 3.2. Assume that the functions s and τ are analytic on Br(a0) × Uρ for a given
a0 ∈ R

m and for given numbers r > 0 and ρ > 0, and satisfy conditions (1.4), i.e. that s is odd
and ρ even w.r.t. θ . Suppose in addition that the vector ω is constant and satisfies condition
(3.1). Then, there exists ε0 > 0 such that for all ε ∈ (0, ε0) and for any β ∈ R

m, there exists
a function Iβ(a, θ) analytic on Br/2(a0) × Uρ/2 and such that

‖Iβ(a, θ) − β · a‖
r/2,ρ/2

� C0ε (3.4)

for some constant C0 depending on bounds of the derivatives of s and τ . Moreover,
if (a(t), θ(t)) denotes a solution of (1.3) starting at a(0) ∈ Br/2(a0), then as long as
a(t) ∈ Br/2(a0),

d

dt
Iβ(a(t), θ(t)) = R(a(t), θ(t)), (3.5)
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where R(a, θ) satisfies

‖R‖
r/2,ρ/2

� exp

(
− c0

εσ

)
(3.6)

with σ = 1/η, η = ν + n + 1 and where c0 is a constant depending on r, ρ, γ, ν, n and the
functions s and τ .

Proof. As soon as k � 2, the εk-term in the derivative of Iβ (compare (2.2)) vanishes for all
(a, θ) if and only if

ω · (∂θJk) = −s · (∂aJk−1) − τ (̇∂θJk−1),

where, for brevity, we have omitted the arguments (a, θ) in the functions s, τ and Jk . We now
proceed by induction. We have already established that J1 is even. Assume that there exist
real-analytic functions J1, . . . , Jk−1, k � 2, 2π -periodic and even w.r.t. θ . Then, the function
(∂aJk−1) is even w.r.t. θ and the function (∂θJk−1) is odd, so that, upon applying the rule

odd × even = odd,

we deduce that the function s · (∂aJk−1) + τ · (∂θJk−1) is odd and hence of zero average. The
hypotheses of lemma 3.1 hold with G = s · (∂aJk−1) + τ · · · (∂θJk−1) and 〈G〉 = 0, thus
ensuring the existence of a real-analytic function Jk which is even w.r.t. to θ .

Assume that Jk−1 is analytic on Br∗(a0) × Uρ∗ for some positive numbers r∗ < r and
ρ∗ < ρ. Let μ < min(1, r∗) and δ < min(1, ρ∗) be positive constants. We have, using (3.3),

‖Jk‖r∗−μ,ρ∗−δ
� 2η−1κ0Mδ−η+1(‖∂θJk−1‖r∗−μ,ρ∗−δ/2

+ ‖∂aJk−1‖r∗−μ,ρ∗−δ/2
).

Now, as Jk−1 is analytic on Br∗(a0) × Uρ∗ , we obtain using Cauchy estimates

‖∂θJk−1‖r∗−μ,ρ∗−δ/2
� 2

δ
‖Jk−1‖r∗−μ,ρ∗

and

‖∂aJk−1‖r∗−μ,ρ∗−δ/2
� 1

μ
‖Jk−1‖r∗,ρ∗−δ/2

.

Gathering previous estimates, we thus get

‖Jk‖r∗−μ,ρ∗−δ
� Cδ−η+1

(
1

δ
+

1

μ

)
‖Jk−1‖r∗,ρ∗

,

where C is a constant independent of δ and μ. For L ∈ N, let δ = ρ/(2L) and μ = r/(2L).
By induction we easily obtain

‖Jk‖r/2,ρ/2
� C(cL)ηL

for some constants C and c depending on n, ν, γ and M. We then define

Iβ(a, θ) = β · a +
K∑

k=1

εkJk(a, θ)

with the optimal truncation index K = Floor((eεc)−1/η) (see, for instance, [HLW06, Nek77]).�

Corollary 3.3. Under the hypotheses of theorem 3.2, ε0 can be taken sufficiently small so that
the following holds: let (a(t), θ(t)) be a solution of (1.3) such that a(0) ∈ Br/4(a0). Then we
have for all t � exp(c0ε

−σ /2),

|Iβ(a(t), θ(t)) − Iβ(a(0), θ(0))| � exp(−c0ε
−σ /2), (3.7)
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where c0 is the constant appearing in (3.6) and

|β · a(t) − β · a(0)| � Cβε

for some constant Cβ independent of ε.

Proof. It is clear that (3.7) is valid as long as we have a(t) ∈ Br/2(a0). This result combined
with (3.4) for β scanning all vectors of the canonical basis of R

m leads to

‖a(t) − a(0)‖ � C0ε

for some constant C0, as long as a(t) ∈ Br/2(a0). Hence, we deduce that if ε0 � r/(4C0), we
have a(t) ∈ Br/2(a0) for t � exp(c0ε

−σ /2) which completes the proof. �

4. Some comments on the resonant case

Suppose that the diophantine condition (3.1) holds only for α’s such that α ·ω �= 0, a set which
is not assumed to be reduced to {0} ⊂ Z

n, in contrast with the situation considered before:

Definition 4.1. For a given set of frequencies ω = (ω1, . . . , ωn) ∈ R
n, the resonance module

M is defined as

M = {α ∈ Z
n|α1ω1 + · · · + αnωn = 0}.

The vector of frequencies ω is said to be non-resonant outside M if

∃γ, ν > 0, ∀α ∈ Z
n\M, |α · ω| > γ |α|−ν . (4.1)

The orthogonal of the resonant module is defined by

M⊥ = {β ∈ Z
n|∀α ∈ M, α1β1 + · · · + αnβn = 0}.

Under the assumptions (1.4), equation (1.3) admits a formal invariant of the form (2.1) if and
only if equations (2.4) hold for all k � 1. At each step k, we thus have to solve once again the
homological equation

ω · ∂θJ + G = 0. (4.2)

Now, in contrast with the nondegenerate case, 〈G〉 = 0 is not a sufficient condition to ensure
the existence of a solution. As a matter of fact,

ω · ∂θJ (a, θ) =
∑
α∈Zn

(ω · α)jα(a) eiα·θ =
∑

α∈Zn/M
(ω · α)jα(a) eiα·θ ,

so that one should have

ω · gα = 0 for all α ∈ M, (4.3)

a condition which is not satisfied in general. Consider for instance the system⎧⎨
⎩

ȧ = ε sin(θ1 − θ2)

θ̇1 = 1 + ε

θ̇2 = 1 + 2ε,

with exact solution⎧⎨
⎩

a(t) = a(0) + cos(εt)
θ1(t) = θ1(0) + (1 + ε)t

θ2(t) = θ2(0) + (1 + 2ε)t.

We see that a(t) is not an adiabatic invariant, implying that (4.3) is indeed necessary. Even
when condition (4.3) is fulfilled, the construction cannot be carried on further than k = 2. It
seems that in this situation, a more elaborate analysis is needed.
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